Planning Overview
 Year 1 Measures (length, capacity, weight)
 Money is a separate plan; Time is a separate plan.

Compare, describe and solve practical problems for: lengths and heights [for example, long/short, longer/shorter, tall/short, double/half]
Compare, describe and solve practical problems for: mass/weight [for example, heavy/light, heavier than, lighter than]
Compare, describe and solve practical problems for: capacity and volume [for example, full/empty, more than, less than, half, half full, quarter]
Measure and begin to record the following: lengths and heights, mass/weight, capacity and volume, time (hours, minutes, seconds)

	Teaching and Learning
Solve practical problems using direct comparison of lengths, heights and widths	Comparing 2 objects Length boxes (longer/shorter than) containing pairs of objects to compare e.g. ribbons, pencils, rods, keys, string, wool, toothbrush, feather. Make sure line up to a common starting point to compare directly. Similar boxes for width (wider/narrower than) and height (taller/shorter than).
	Comparing a set of objects against 1 given object Hunt things that are longer, shorter, taller, wider than a given object and put into 2 sets.
	Ordering several objects
	Cuisenaire rods longest to shortest
	Organising a group/whole class into height order shortest to tallest Go outside and find sticks and order them from fattest to thinnest
	Order the ribbons from widest to narrowest.
	Mark heights on the wall with names - who's tallest, shortest etc
	Choose items from the classroom and make a measuring chain e.g. I have a bottle of water, can you find me something that is shorter?
	Wrapping parcels- is this piece of paper long enough? Wide enough?
	How can we check?
	IENGTH Mastery
	LENGTH Which line is longer?
	Explain yourreasoning.
	$\sim \sim$
	Choose fluency questions to reinforce the vocab and the idea that length is measured lying down and height is measured standing up.

	Make and measure items in DT or Art linked to current topic e.g. rockets, cars, pictures of flowers or animals. Estimate and measure in science and PE e.g. how far a car will roll down a ramp, how far will a balloon with a straw on move along a string, how far can you throw a beanbag? NRICH - Little man The Man is much smaller than you and me. Here is a picture of him standing next to a mug. Can you estimate how tall he is? Can you think of something that you have at school or home that is approximately Whice as tall as the Man? How tall do you think the Man's mug might be? Can you estimate how many "Man mugs" of tea might fill one of our mugs? Investigate a real-life problem e.g. using real peas in a pod - do the longest pods have the most peas? Measure and record in cm then count the peas inside. Collect everyone's results together.
Solve practical problems using direct comparison of capacity and volume	Practical investigation of different sized and shaped containers in the water tray. Rice and sand would also be suitable. Include shallow wide and tall narrow containers. Comparing 2 objects Direct comparison of 2 containers. Which container holds more? How do you know? 2 methods - fill one and pour it into the other. Or fill both and pour into identical measuring jugs to compare capacity directly. Use vocabulary full, empty, half-full, half-empty. Why is the water not as tall in this container if they have the same capacity? Comparing a set of objects against 1 given object Find containers that hold more/less/the same as the jug. Could estimate first. Use new vocabulary e.g. which containers do you think will have a greater capacity than the jug? Have a smaller capacity? Have the same capacity? How could you find out? Pour water into the jug to check that you are correct. Ordering a set of containers Follow on from activity above by trying to put 3 or 4 containers in order

NRICH - compare the cups

Which might you choose if you wanted a lot to drink? Why?
Which one would you choose if you did not want a lot to drink? Why?
Could you arrange the cups in a line from the one that holds the most liquid to the
ne that holds the least liquid
NRICH - Thirsty - ordering pictures of full, empty, half empty, tall and short glasses (2 levels yellow (easier) and orange GD)

This problem has been designed to work on in a group of about four. For more details about how you might go about doing this, please read the Teachers' Notes.

You will need to print off these eight cards, which have pictures of glasses of orange and blackcurrant juice on them. You need one set of these cards for your group.

Have a good look at the cards with everyone in your group. Talk to each other about what you notice. Can you sort the cards in different ways?

Now you are ready for the challenge. You will need to print off this set of clue cards. There are ten clue cards altogether.

Give the clue cards out to everyone in your group. Take it in turns to read your cards out loud. Listen out for instructions that tell you what to do, which are written on one or more of the cards.

Can you lay out the pictures of the drinks in the way described by the clue cards?

\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Solve } \\
\text { practical } \\
\text { problems } \\
\text { using direct } \\
\text { comparison } \\
\text { of } \\
\text { weight/mass }\end{array} & \begin{array}{l}\text { Practical investigation of different sized and shaped objects to weigh. } \\
\text { Include big light objects and small heavy objects. } \\
\text { Comparing 2 objects directly } \\
\text { Give children objects to directly compare the weight of. Encourage } \\
\text { them to be a human balance, comparing the objects in their } \\
\text { outstretched hands. } \\
\text { Introduce a bucket balance. You could make a } \\
\text { balance to weigh larger objects using a coat hanger } \\
\text { on a hook. } \\
\text { Which is heavier? How do you know? } \\
\text { What will happen if I put this in here? }\end{array} \\
& \begin{array}{l}\text { Comparing a set of objects against 1 given object } \\
\text { Have a set of objects for the children to weigh. Find objects that are } \\
\text { heavier/lighter than a given object e.g. a toy dinosaur } \\
\text { Ordering objects by weight } \\
\text { Trying to compare more than } 2 \text { objects can be tricky with a balance. It } \\
\text { could be helpful to introduce a set of spring scales. These can be made } \\
\text { quite easily with recycled milk or juice cartons and long elastic bands. } \\
\text { Ideas around this can be found on NRIcH at } \\
\text { https://nrich.maths.org/13361 }\end{array}
$$

In the resources section at the bottom there is a link to a video that

explains the value of these as a resource and shows exactly how to

make them.

Using a set of 3 identical spring scales taped onto a board, it is easy to

directly compare the mass of 3 items. You could then go onto

comparisons using a single spring scale and marking how far down

each item stretches the basket. Predictions can then be made using a

different colour pen before testing.

Can they order objects by weight? Make sure this is different to the\end{array}\right\}\)| order if you ordered them by size. E.g. wrap up boxes with weights |
| :--- |
| inside or wrap up different balls e.g. inflatable, boule, football, bouncy |
| ball so biggest is not the heaviest. |

	Mastery
	MASS Here are three items. Can you sort them from lightest to heaviest by feeling them with your hands? Give pupils three items that are quite different in mass.
	Which is heavier, a toy car or a toy dinosaur?Mastery with Greater Depth Here are four items. Can you sort them from lightest to heaviest using these balance scales? Give pupils four items that are quite similar in mass.
Solve practical problems using nonstandard units to measure weight/mass	Introduce concept of weighing objects against non-standard units such as multilink cubes. Can you make the scales balance? This allows us to see how much heavier something is e.g. if it is twice as heavy. If the car weighs 3 cubes, how much would 2 cars weigh? Prove it. Record weights in cubes for different objects and use this to order them.

Measure and begin to record weight/mass using standard units (kg) and use to solve practical problems	Introduce 1 kg weight and pass it around.

