Planning Overview

Year 1 Multiplication and Division

Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

1NF-2 Count forwards and backwards in multiples of 2,5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.

	Teaching and Learning
Introduction	What do children already know? Have children experienced working with money? Numicon? Can they add two things that are the same? Have they noticed the special case where the 2 parts are the same during part whole model work in composition? Have they used the terms doubles and halves in practical play-based activities? How can they show this with resources or on paper? What happens when you add two of something together? Have key words on card displayed or on the tables, double, half, 2 lots, odd, even, more, less, bigger, smaller, equal. What language are they able to use when you ask open ended questions? How can you share a number between 2?
Talk to the children about doubling and halving. Can you show me double 2? What do you notice when you are doubling/halving?	
Do any children already make links to odd and even numbers taught in PV beyond 20?	
Use a mirror to show doubling with practical objects. Make a tower of 3 put a mirror next to it, what do you see now?	
Take a number (numeral, tower, numicon piece) and double it. Sort pictures into doubles/not doubles.	
What do you need to add to this picture to make it a double?	

	Begin to make sure groups are equal - link back to doubles which is 2 equal groups - now going to make different quantities of equal groups Represent 3 groups of 5 with resources such as numicon or counters. Just focus on the language and representation initially rather than finding the total. Give an accurate 'groups of' sentence for a given representation Image taken from Gordon's Multiplication game on Topmarks https://www.topmarks.co.uk/Flash.aspx?f=multiplication Draw a representation for a 'groups of' statement. Move onto finding the total by using objects or drawing pictures to support the calculation and counting in ones to find the answer. Extend to word problems in contexts where the term 'groups of' is not used specifically. You may want to adapt the mastery question to
	Ali buys 3 bags of apples. Each bag has 4 apples in it. How many apples does he buy?
Applying counting in 2s 5 s and 10 s to solve 'groups of' problems	Look at the specific situation where the groups being made are groups of 2,5 or 10 . Link the idea of groups of problems with the idea of counting in different multiples. Count in these steps rather than counting in ones to calculate the answer more efficiently. How many oranges in the bags?

	Look at word problems where children can count in different multiples to solve them. How many fingers are there on 5 gloves? What multiple can you count in to help you? How can you keep track of the number of gloves? If I knock down all the skittles each time and I have 3 goes, what will my score be?
Applying counting in 2s 5 s and 10 s and unitising to solve money problems	Introduce the children to just the 1 p $2 p 5$ p and 10p coins if they have not done the Y 1 money unit yet. This is the first time that a single object will represent a whole group - a concept known as unitising. i.e. a 5 p coin represents 5 pennies but you can't see the fiveness of 5 p by looking at the single coin. Make sure children understand the equivalence of each coin to that many pennies. Some children may find it useful to attach coins to numicon or to have tokens with dots on initially so that this fiveness can still be seen. (Money token images taken from NCETM - professional development materials) Introduce money word problems involving repeated groups of 2 p 5 p and 10p coins. How can you buy a 10p toy using only one type of coin? Can you think of more than one solution? Chews cost $2 p$ each. How much do three chews cost?

	Sweets cost 5p each, Emma says that the total of her sweets was $19 p$. Can she be correct?
	Show 19p using only 2p, 5p and 10p coins. Find three different ways to do it.
	Using only 2p, 5p and 10p coins, can you show 20p? In how many different ways can you do this? Are you sure you have got them all? Explain how you know.
Repeated	
addition	Introduce repeated addition as a way to represent equal groups - link back to doubles notation
Represent 5+5+5 using numicon or counters moving onto drawing pictures. Record repeated addition sentence for a given picture or sets of objects. Use repeated addition sentences to show how you calculated answers to word problems.	
Arrays	Coloured dot stickers can be good for representing arrays.
Introduce arrays as a special organised way of making groups. Show how there are groups going across and down. Look at arrays in the environment e.g. egg boxes, bun tins, numicon Can you write the number sentences to describe them? Can you make an array to represent a groups of statement or in the table below. Cepeated addition number sentence?	
Can you use an array to solve a word problem?	

	Word problem How many wheels on 4 bikes? Show pupils pictures as 'How many biscu 'How many cherries Observe how pupils count in ones?	Array or groups of are there a re there alto ount the obj	Calculation $2+2+2+2$ $2+2$ $2+2+2+2+2$ +2	Answer 8 4 12 Ask question etc. or do they	
Division by Sharing	Link back to the unit. Encourage ch between mor Make sure th that they hav The answer What do you between 5 p	he shar Idren to than 2 y check shared ill be the notice ple?	ween two as practical pro e. the groups ar ally. unt in one gro he numbers	halving a blems inv equal a p. at we co	e beginning of ing sharing e end to check share equally
Division by Grouping	Return to the apparatus. I have 20 cub equal groups I have 8 sock Now conside answer. The	dea of es and can I m how m a probl nswer is	groups from em into equa What other eq airs could I m ere you could umber of grou	arlier usin groups al group ake? draw a ps	practical 0. How many an I make? ure to show the

	I want to give you all 2 stickers for your brilliant work. I have 10 stickers on each sheet. How many children can have 2 stickers each from this sheet? Draw the children and their stickers Draw an array to show how you would solve the problem. I am thinking of a number between 10 and 20. I can share it equally between 2 . What could my number be? Which numbers can't it be? Why? Mastery with Greater Depth How else could 20 sweets be put into bags so that every bag had the same number of sweets? How many bags would be packed each time? Mastery with Greater Depth Toy aeroplanes have 5 wheels. How many wheels would you need to make different numbers of aeroplanes?
Consolidation and Problem Solving	Range of problems linked to multiplication, division and odds/evens Are children solving problems efficiently? Can they select the most effective resource to help them? Nrich - Biscuit decorations - complete practically - what will be on the \qquad biscuit? - Share bears - Doubling fives - Lots of Biscuits (link to text The Doorbell Rang by Pat Hutchins) Maths Challenges for Able Pupils Fireworks - change to 2 and 5 star trails - 20 stars in total

