Planning Overview

Year 2 - Topic Place Value

Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward
Recognise the place value of each digit in a two-digit number (tens, ones)
Identify, represent and estimate numbers using different representations, including the number line
Compare and order numbers from O up to 100; use <, > and = signs
Read and write numbers to at least 100 in numerals and in words
Use place value and number facts to solve problems.TAF Statements
2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning. 2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 .

Partition any two-digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus (TAF ARE)
Read scales* in divisions of ones, twos, fives and tens (TAF ARE)
Read scales* where not all numbers on the scale are given and estimate points in between (TAF GD)
Partition a two-digit number into tens and ones to demonstrate an understanding of place value, though they may use structured resources to support them (TAF WT) Read and write numbers in numerals up to 100 (TAF WT)

	Teaching and Learning
Introduction and initial assessments	Give the children a range of numbers on cards (start with $1-30$ and increase size as appropriate) and a range of resources. What numbers are children able to make? Are they able to order numbers? Say numbers? Are they confident with the resources? Can they use pegs and post its to mark multiples of 10 on a beadstring?
Read and write numbers up to 100	Begin by counting with the children alongside images such as a hundred square and beadstring. A beadstring is good to show the quantity of the number as well as the count. Mark the multiples of 10 on a beadstring and reinforce the patterns of counting after each multiple of ten. Can children understand the difference between the -teen and -ty numbers? Can children peg a given amount on a beadstring? What was the ten before our number? After our number? Can they show you a higher number? What number would that be on the 100 square?

Link to representations in a Place Value Chart and record as a number sentence.

(Some images taken from NCETM - professional development materials)
Repeat using a range of representations and recording strategies until the children are confident answering the mastery question below.

Mastery

Write the missing numbers in the boxes.

1) In the number 47 , there are \square groups of 10 and \square ones.
2) The number that is ten groups of 10 is \square.
3) The number 75 shows \square in the tens place, and \square in the ones place.

How do you know this number shows 45 ?

What would change if I wanted to show 55? 49?

Use counters to represent numbers on a Place Value Chart and then complete the problem below.

	Take a pair of counters the same colour. Using a 100 square put one counter on a 1-digit number. Count on 10 and place the other counter where you land. What do you notice? What is the same and different about the start and end number? What would happen if we counted on another 10 ? Check. Repeat with a different colour. Use dienes, straws or numicon to model adding 10 to a number. Continue the sequences and look at what changes and what stays the same. Rehearse counting in 10s from any number. Complete sequences forward and backward. $22, \ldots, 42,52,62, \ldots$ Spot the mistake $13,23,33,34$, Sometimes, always or never When you count in 10 s, only the 10 s digit changes. Look at pattern $\begin{aligned} & 10+4=14 \\ & 20+4=24 \\ & 30+4=34 \end{aligned}$ What do the children notice? Also look at $\begin{aligned} & 10+14=24 \\ & 10+24=34 \\ & 10+34=44 \end{aligned}$ Show the patterns using the part/part/whole model, on a place value chart and using Numicon. How can the children use place value to help them calculate?
Compare and order numbers including relative positions on a number line	Compare two numbers using resources. Which number is bigger and why? Start with obvious numbers and move to less obvious numbers. E.g. 2 and 98,14 and 84,34 and 45,56 and 58. Numicon is weighted so this can be a good example to use. Which is the largest 54 or 63 ? Place 6 ten pieces in one side of a scale and 5 ten pieces in the other. Which is more how do we know? Repeat for other examples. Are they bigger or smaller? How do we know? How many tens in the number? Reinforce that if the tens are different this will help us to determine the larger number but if the tens are the same, we then need to look to the ones column.

Counting in steps of 10, 5 and 3	Place these numbers on the number line: 10, 48, 30 Greater Depth e.g. Place 45 on a number line from $0-100$, then on a number line from 0 to 50 and finally on a number line 30-50. What do the children notice? Mastery with Greater Depth Place 47 on each of these empty number lines. \qquad How many 2-digit numbers can you make from the digit cards 6, 3 and 4? What is the smallest and largest number you can make? Can you place them on a number line? What is the difference between the numbers? Consider which elements of counting in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s you will complete at this stage and which will be covered in more detail in the multiplication and division unit. Counting in 10 s would be useful to consolidate prior to addition and subtraction unit. Counting in 10s may have been covered in the Pattern in Place Value section above. If not cover that now. If appropriate at this stage, repeat this sequence of learning for $2 \mathrm{~s}, 5 \mathrm{~s}$ and 3 s and continue to reinforce through daily fluency activities. Use coins, objects, eyes, wheels on a bike, fingers etc to reinforce understanding. Drop $2 \mathrm{ps} / 5 \mathrm{ps} / 10 \mathrm{ps}$ into a tin or money box. Can they identify the total amount after the coins have been dropped? How did they work it out? Can we count in order to check the total? Which number is the odd one out? How do you know?

	NRICH - 2-Digit Targets You have a set of the digits from 0-9. Can you arrange these digits in the five boxes below to make two-digit numbers as close to the targets as possible? You may use each digit once only. How will you know that your solution is as close to the targets as possible? NRICH -What number I am less than 25. My ones digit is twice my tens digit. My digits add up to an even number. What number am I? Repeat with other clues. Can the children make their own clues up?

