Planning Overview

Year 3 Addition and Subtraction

Add and subtract numbers mentally, including

- A three-digit number and ones
- A three-digit number and tens
- A three-digit number and hundreds

Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction

Estimate the answer to a calculation and use inverse operations to check answers Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice.
3NF-3 Apply place-value knowledge to known additive and multiplicative number facts AS-1 Calculate complements to 100
AS-2 Add and subtract up to three-digit numbers using columnar methods.
AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.

	Teaching and Learning Number facts
Before starting this unit consider which skills the children will need to recall from KS1 e.g. \bullet \bullet Number bonds to 10 and related facts	
	- Adding two 1-digit numbers. - Subtracting a 1-digit number from a teen number
Consider whether they need to use tens frames, Numicon or bead	
strings to be able to 'see' the number facts. For $6+7$ can they	
reorder/partition/use near doubles to work it out?	
Once the children show that they understand number facts continue	
to consolidate through games, daily routines and home learning.	

Build up to missing box questions
4. Fill in the missing numbers.

$$
30+\square=110
$$

Mathematics guidance: key stages 1 and 2 Non-statutory guidance for the national curriculum in England.
Show related facts in a bar model/triangle/part-whole model.
$300+500=800,500+300=800$
$800-500=300,800-300=500$

Lead to the relationship with missing numbers $300+?=800$
$3+5$ will also help with $33+5$? Why?
What other facts would it help with?
Complete these calculations. What do you notice?
$3+7=\quad 8+2=\quad 6+4=$
$30+70=\quad 80+20=\quad 60+40=$
$33+7=\quad 88+2=\quad 66+4=$
$333+7=\quad 888+2=\quad 666+4=$
$300+700=\quad 800+200=\quad 600+400=$

How does the first fact help work out the other facts
Missing box and inverses
Teach children how to use a bar model to find the 4 related calculations in an addition and subtraction fact family. Discuss how addition is the inverse to subtraction.

Mastery

Write the four number facts that this bar model shows.

Solve missing number calculations using related facts from the bar model. E.g. 300 + ? = 540

How could you use a bar model and an addition and subtraction fact family to check the answer to this calculation?
$345+243=588$

```
Adding a 3-
digit number
and ones
mentally
234 + 5 which related fact can we use to work this out? What does it look like on a number line?
Use Place Value Counters, what does the starting number look like, what are we doing to it? What does the end number look like?
\(367+6=\)
Use Place Value Counters, what does the starting number look like, what are we doing to it? What happens when we get ten counters in one column? What does the end number look like?
How would you work this out on a number line? How could we partition the 6 to add it on in the most efficient way?
```



```
What if we were adding 6 to 488 ? How would you split it then?
```



```
Practise adding numbers using bridging.
```


Mastery with Greater Depth

```
For positive integers are the following statements always, sometimes or never true?
- The sum of 2 odd numbers is even.
- The sum of 3 odd numbers is even.
- Adding 5 to a number ending in 6 will sum to a number ending in 1 .
- Adding 8 to a number ending in 2 will always sum to a multiple of 10 .
Explain why in each case.
Children can give True and False examples for the statements above to help decide whether they are S/A/N true. They should then use these examples to create a generalisation to explain why it is Sometimes, Always or Never True.
```

Subtracting a 3-digit number and ones mentally	236-5 which related fact can we use to work this out? What does it look like on a number line? Use Place Value Counters, what does the starting number look like, what are we doing to it? What does the end number look like? $362-5=$ Use Place Value Counters, what does the starting number look like, what are we doing to it? What happens when we get ten counters in one column? What does the end number look like? How would you work this out on a number line? What if we were subtracting 5 from 483 ? How would you split it then? $\begin{array}{r} 483-5= \\ -? ~ \end{array}$ Practise subtracting numbers using bridging. I think of a number and add 6, my answer is 363 what was my starting number?

Adding a 3digit number and tens mentally, including compensating

Addition of 10 s with no bridging e.g. $40+50$ and $34+40$

Addition of 10 s crossing boundaries. E.g. $70+50$.
Support children who are struggling to cross the boundary with a 200 grid
Two-hundred grid

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170
171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190
191	192	193	194	195	196	197	198	199	200

	Addition of 10s crossing boundaries beyond 200. E.g. $140+70$. Model tackling these calculations in different ways including partitioning the 70 into $60+10$ in order to bridge through 200. $140+60+10$ Demonstrate on a number line if necessary See 140 as 14 tens and 70 as 7 tens. 14 tens +7 tens $=21$ tens. 210 Add 10s when there is a value in the 1s column $364+70$ Reinforce with counters. How would you complete $364+90$? ' 90 is a harder number to add on than 100 so I am going to add on 100 instead and then -10 from my answer' Sort questions into Easy and Hard. Explain your thinking.
Subtracting a 3-digit number and tens mentally, including compensating	Subtraction of 10s with no bridging e.g. 90-40 and 84-30 Subtraction of 10 s crossing boundaries $240-70$. Partition 70 into 40 and 30 to bridge back through 200. 240-40-30. 24 tens -7 tens $=17$ tens. Children may need support to bridge through the hundreds when there is a number in the ones column. E.g. $234-70$ $\begin{aligned} & 234-30=204 \\ & 204-10=194 \\ & 194-30=164 \end{aligned}$ 23 tens and 4 ones - 7 tens $=16$ tens and 4 ones $=164$

	$234-70$ partition 70 into 34 and 36 to bridge back through 200. Which method do you prefer? $523-80$ what range of ways could we do this. Discuss compensation. Extend to missing number and missing digit questions. $14 ?-60=85$ How did you know? $342-?=282$ 34 tens and 2 28 tens and 2 How many tens would you need to take away?
Adding and subtracting a 3-digit number and hundreds mentally	Add and subtract 100s looking at the digit that changes. I think of a number and subtract 400, my answer is 345 , what was my starting number? Word problems. 432-300. Write 2 word problems that link to this calculation? Always/sometimes/never linked to a range of digits. E.g. if I add tens, only the tens column changes. Is this always, sometimes or never true?
Estimation	Talk about near numbers. If we were adding $413+589$ what would be a near answer to this calculation? How can this help us? Why should we bother estimating? Making and estimate Which of these calculations have an answer that is between 50 and 60? 173-118 334-277 931-870
Finding the difference	Using a bead string, model how finding the difference still relates to subtraction. 25-18. Model counting back first and show that there are 7 beads left at the end of the bead string. Then slide the first 18 beads to the end and show that you can count on from 18 to 25 to show that the difference is 7 . Allow children time to become fluent with this strategy.

	NRICH - Got it Got It Age 7 to 14 Challenge Level Got It is an adding game for two players. You can play against the computer or with a friend. It is a version of a well known game called Nim. a friend. It is a version of a well known game called Nim Start with the Got It target 23. The first player chooses a whole number from 1 to 4 . Players take turns to add a whole number from 1 to 4 to the running total. The player who hits the target of 23 wins the game. Play the game several times. Can you find a winning stras. Can you always win? Does your strategy depend on whether or not you go first? Mastery with Greater Depth Flo and Jim are answering a problem: Danny has read 62 pages of the class book, Jack has read 43 . How many more pages has Danny read than Jack? Flo does the calculation $62+43$. Jim does the calculation 62-43. Who is correct? Explain how you know. Pupils might demonstrate using a bar model to explain their reasoning.
Written methods of addition	In line with your school calculation policy move from using concrete resources such as, Dienes or Place Value counters to expanded methods then to the compact method as appropriate. Start with no exchange, then exchange in ones column, tens column and then ones and tens. Each time children move to more exchanges they will need to move back through the stages in the CPA approach.

	NRICH - Subtraction Surprise Subtraction Surprise Age 7 to 14 Challenge Level In the video below, Alison chooses some three-digit numbers and carries out some calculations which lead to a surprising result! Watch the video. What do you notice? Can you figure out the steps that Alison carries out in each calculation?
Problem solving and consolidation	Give children a range of word problems to solve. Can children identify which are single step problems or multi-step problems? Can they identify the language associated with additon and subtraction? Use the bar model to support children when they are deciding which operations are needed to solve the problems. What is the most efficient method to solve each problem? Move to more open-ended problems as you assess that the children are secure with the range of methods and can solve word problems
	Throw a 1 to 6 dice and each time record the digit in one of the place holders. The aim is to get the sum as low as possible. Repeat to find different answers. Could you have done it in a different way? Compete against a friend and compare your answers.

First4Maths Digging Deeper Activity
Present children with the grid. Can children use mental strategies and column addition and subtraction to solve this grid?

The shapes have been halved - what is the total of this row?

True or false?
Using all of the shapes we have made so far, we can use 2 shapes to create a total of 127.
Do the shapes have to be wholes? Can the children halve or quarter the original shapes?

Can the children use the shapes to fill in this grid?

$$
=127 \quad=191
$$

Suggested answer

$$
=127 \quad=191
$$

Can children use the shapes to create grids of their own to solve with a partner? What clues/prompts can they give to help their partner solve the grid?

