Planning Overview

Year 3 Fractions

Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 .
Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators.
Recognise and show, using diagrams, equivalent fractions with small denominators. Add and subtract fractions with the same denominator within one whole.
Compare and order unit fractions, and fractions with the same denominators Solve problems that involve all of the above.

3F-1 Interpret and write proper fractions to represent 1 or several parts of a whole that is divided into equal parts.
3F-2 Find unit fractions of quantities using known division facts (multiplication tables fluency).
3F-3 Reason about the location of any fraction within 1 in the linear number system.
3F-4 Add and subtract fractions with the same denominator, within 1.

Placing fractions on a number line - introducing equivalents	Take a range of fraction strips and create a number line for each strip. Use the fractions strip to draw a number line - lay the fraction strip down and children use this straight edge to draw their number line against. Children to complete number line activities such as spot the mistake, can you complete this number line, can you position these fractions on a number line? The fraction strips can support the children with their understanding and reasoning. For children who are struggling to know what the intervals are on a blank fractions number line, teach them to put a 'top' on the number line to turn it back into a section of the fraction wall. Children may become confused by the 6 markers on the number line and think they are positioning sixths - by putting a top on the number line they can see it's the fifths strip of the fraction wall. What happens if you place quarters and eighths on the same number line? Which equivalents can you find? Which eighths have equivalent quarter fractions and which don't? Complete ? = ? using eighths and quarters. d. Colour $\frac{1}{3}$ of the line.						

First 4 Maths

Equivalent fractions	Using fraction strips, children to explore equivalence. Can they find any sections of the fraction wall that are the same size as one half? Children could do this by using a ruler or by folding their fraction half strip to show only on half. Complete number sentences to show equivalences to a half $\frac{1}{2}=\frac{3}{6}=\frac{4}{8}=\frac{5}{10}$ Do children need to use the fraction wall or can they make the links to the fact that if the numerator is half of the denominator then the fraction will be equivalent to a half. Which of these fractions is the odd one out? $\frac{1}{2^{\prime}} \frac{2}{4^{\prime}}, \frac{4}{6^{\prime}}, \frac{4}{8}$

Placing fractions on a number line - exploring tenths	Take the strip split into tenths and link to a number line. If O is at the beginning and 1 at the end what are the other points on a number line? Introduce the decimal notation underneath. Introduce the tenths column. If we have a fraction that is $\frac{1}{10}$ and we wanted to write this as a decimal then we would put 1 in the tenths column, we don't have any whole fraction strips so the number we would write would be 0.1^{\prime} Where would halfway be on the tenths strip? It would be $\frac{5}{10}$ along. How would we write this as a decimal? We would need to put 5 in the tenths column. 0.5 and $\frac{5}{10}$ would both be another way to say $1 / 2$. Ask questions such as, what is the difference between $1 / 2$ and $\frac{6}{10}$? Which is larger 0.3 or 0.5 ?
	Mastery Shade in 0.7 of this rectangle.
Fraction of an amount	Using a fraction wall and counters as the concrete representation and the bar model as the pictorial representation show children how to find fractions of quantities, first with unit fractions and then with non-unit. So to find $1 / 4$ of 12 we draw a bar, split it into 4 equal sections, share 12 equally across the 4 sections and then record how much is in one of those 4 sections. Discuss how the model supports the fact that to find a unit fraction of a quantity then we divide by the denominator. We divided the bar into 4 equal sections and shared the counters out therefore we shared the counters into 4 groups, we divided the counters by 4. If I eat $1 / 4$ of my bag of 20 sweets, how many are left?

Use the bar model to show what was eaten and what was left.

Repeat with non-unit fractions. To find $3 / 4$ of 8 draw a bar and split it into 4 equal sections. Colour in 3 of those sections because we are interested in 3 of the 4 quarters. Share 8 counters across equally. Now count how many counters are in the 3 coloured in sections altogether.

c. Circle $\frac{4}{5}$ of the flowers.

Taken from - Mathematics guidance: Key stages 1 and 2 - Non-statutory guidance for the National Curriculum in England

Consolidate comparing and finding fractions of amounts with questions such as, Would you rather have $1 / 2$ of $£ 20$ or $1 / 4$ of $£ 20$? They should be able to answer these without calculating and explain their reasoning.

Problem Solving with Fractions of Amounts	Finding fractions of numicon tiles. In pairs give the children numicon tiles 1-10 and some counters. One child covers a fraction of a numicon tile with counters and slides it across to their partner. Their partner confirms what fraction of the tile has been covered - can they express this with equivalent fractions where approprate. After spending some time investigating this, ask children to pile up the numicon tiles that they can find a half of and the ones that they can't find a half of. What do the tiles that they can find a half of have in common? All of these tiles are in the 2 times table. Next ask the children to make a pile of tiles that they could find a quarter of. What do these tiles have in common? They are all in the 4 times table. Now ask the children to make a pile of tiles that they could find a third of. Again ask the children what these have in common - they are in the 3 times table. Ask children to predict what tiles that they could find $\frac{1}{5}$ of. What is the relationship between the denominator and times tables?
Add fraction	Using the NCETM fraction cards, ask children to complete calculations such as $\frac{2}{8}+\frac{4}{8}=$ Ensure that they understand why the denominator doesn't change unless we are simplifying the answer at the end. Mastery Fill in the numerators to make the answer less than 1. Find three different ways to complete the calculation. $\overline{8}+\overline{8}=$ Mastery with Greater Depth Fill in the numerators to make the calculation correct. How many ways can you do it? Explain how you know you have found them all. Ensure that children use a systematic approach to explain how they have found all of the possibilities.

