Planning Overview
 Year 3 Measures
 (Time and money are separate plans)

Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (I/ml)
Measure the perimeter of simple 2-D shapes

	Teaching and Learning
Number lines Addition and Subtraction Strategies	Consider whether the teaching of number lines and calculation strategies needs to be revisited before moving on to the teaching of measures. Are children secure with finding the mid-point on a number line and checking validity of their answers? Have children got a range of calculation strategies secure e.g. addition, finding the difference, counting back?
Measure, compare, add and subtract lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$)	Discuss what children already know about length, they will have measured in cm in Year 2 - assess their retention of these skills. Can they measure the length of a line/side of a shape accurately? What happens when a side is in between 2 whole cm readings? Introduce mm as a way of measuring more accurately. Recap from decimals that a cm can be broken into tenths to give us mm . Children could measure the same lines in cm and mm . What do they notice? Teach children how to draw a line of a given length accurately in cm and mm . These skills could be linked to an Art/DT project, a science investigation or PE activities to make them more engaging and purposeful. NRICH - Car Journey Car Journey Here are three little cars, each going on a journey. Here are three little cars, each going on a journey. For this activity, you will need three little cars. We are going to see how far they can travel. travel.

	Mastery I have 2 m of ribbon. How many 60 cm lengths can I cut from it? How long is the crayon? Find the total length of route A. Find the total length of route B. How much longer is route A Mastery with Greater Depth A crocodile is 3 times as long as a pig. An elephant is 1.2 m longer than the crocodile. The elephant is 4.2 m long. How long is the pig? Ahmed's ruler is broken. Explain how he can still use it to measure things in the classroom. What is the difference in length between the pen and the pencil? \qquad
Measure and compare lengths using mixed units e.g. 1 m and 20 cm and convert between the different units	Teach children known facts about measures of length. Ask them to use these to work out equivalents. $\begin{aligned} & 1 \mathrm{~m}=100 \mathrm{~cm} \text { so } 5 \mathrm{~m}=500 \mathrm{~cm} \\ & 1 \mathrm{~cm}=10 \mathrm{~mm} \text { so } 3 \mathrm{~cm}=30 \mathrm{~mm} \\ & 1 \mathrm{~cm} 2 \mathrm{~mm} \text { would be } 12 \mathrm{~mm} \end{aligned}$ Conversion practice - convert measures of length between different units using known facts. Compare measures where there is a mixed unit of measure. E.g. Place the correct symbol between the measurements > or < 306 cm \square Half a metre Explain your thinking. Children could order measures with mixed units by converting them to a common unit. E.g. Put these measurements in order starting with the largest. Half a metre 75 cm 1 m 43 cm Explain how you did this. Solve word problems where children need to convert one or both measures to calculate. A sunflower was 2 m tall. It grew by another 83 cm . How tall is the sunflower now? Give your answer in centimetres.

Measure the
perimeter of
simple 2-D
shapes

Display a rectangle that has the length of its sides labelled. Ask the children how we would find out how many cm a ladybird (or similar small creature) would need to walk to travel around the entire outside of the shape?

Model taking your finger for a walk around the outside of the shape and call out the side lengths as you go. I've just walked 10 cm , now l've walked 3 cm , I've just walked 10 cm and now l'm walking my last 3 cm . Write this as an addition sentence under the shape 'I walked 10cm + $3 \mathrm{~cm}+10 \mathrm{~cm}+3 \mathrm{~cm}^{\prime}$
So, what is the total? Model the language of perimeter 'The perimeter of this shape is 26 cm ' Children to practice calculating the perimeter of shapes that have all sides labelled.

What if a shape has equivalent length sides? Do we need to have both of those sides labelled? Can we deduce the length of a side from the opposite side?

What about a regular shape like a square? If we know the length of one side, do we know the length of all the sides?

Can children create an efficient way to calculate the perimeter of shapes with equivalent sides or regular shapes?

10 cm
$10 \mathrm{~cm} \times 2$
$3 \mathrm{~cm} \times 2$

For a square, do they understand that they can multiply the known side length by 4 ?

Children to practise their measuring skills and measure shapes to state the perimeter. Ask children to measure large and small perimeters such as their classroom or the field.

Children draw shapes that need to have a given perimeter. Is there more than one way to draw a rectangle with a perimeter of 24 cm ?

Children work out a missing side length if they know the perimeter.
One side of a rectangle is 8 cm long. If the perimeter is 20 cm , what is the missing length?

8 cm

Measure,
compare, add
and subtract
mass (kg/g);

Provide packages with hidden weights inside. Children to weight the packages against each other and order the packages by weight using a balance. Children to feel the weight of a 100 g weight and a kg and predict how many grams they think each package weighs. Children to test their predictions by using the weights in the balance alongside the packages.

Is there a different type of weighing scale we can use? When do we weigh things in our daily lives? Show children various scales with dials and digital scales e.g. kitchen scales, bathroom scales, post office scales.

Ask children to estimate which object in the classroom is about $100 \mathrm{~g} / 1$ kilogram/half-kilogram and use one of the scales to check how close they were.

Children to use the known fact that 1000 g is a kg to work out what half a kg is in g , a quarter of a kg , etc.

Using scales of varying types, children to measure the weight of different objects and record this accurately in kg and grams e.g. 1500g or $1 \frac{1}{2} \mathrm{~kg}$ or 1 kg and 500 g .

Make links to number line work for reading scales where not all numbers on the scale are shown.

Mastery

What is the mass of flour on the scales?

I need $\frac{3}{4} \mathrm{~kg}$ of flour to make a cake.
How much more flour do I need to add to the scales?

Use mass as an opportunity to develop problem solving skills and to reinforce addition, subtraction, multiplication and division strategies.

	https://www.first4maths.co.uk/product/maths-challenges-with-reasoning/ Mastery with Greater Depth 6 toy cars balance 2 dolls. 4 dolls balance 1 toy robot. If the robot weighs 3 kg , what does each toy car weigh?
Add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/ capacity (l/ml)	Word problems within measures are a really useful way to reinforce efficient addition and subtraction strategies. The train is 70 m long. It adds another carriage that is 60 m long. How long is the train now? I am trying to hit a ball 199 m My first hit is 89 m then I run and pick it up again and my second hit takes it the rest of the 199m. How far did I hit it the second time? Dan needs 1 kg of flour to bake brownies for the cake sale. There are 450 g left in the bag. How much more does he need to buy? I had a 2 l bottle of lemonade and gave 250 ml to Jan and 320 ml to Ben. How much lemonade is left in the bottle? If there are 630 ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? Make up some more questions like this. How would a bar model help establish it we needed to add or subtract? Do we know the parts in the problem or the whole? If we know the two parts then we add, if we know the whole and one part we subtract. What method would we use to calculate the answer? Reinforce efficient strategies.

