Maths

Planning Overview

Year 3 Multiplication and Division

Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.
3NF-3 Apply place-value knowledge to known additive and multiplicative number facts
3MD-1 Apply known multiplication and division facts to solve contextual problems with different structures, including quotative and partitive division.

	Teaching and Learning
Introduction	Practical session - range of calculations and resources on each table. Choose a calculation and represent in different ways (on a bead string, with numicon, using arrays, groups of counters, repeated addition) Children should be confident representing $2 x, 5 x$ and $10 x$ table facts from Year 2. Remind children about commutativity, this will be covered within the unit, but it gives them an awareness that they already know some of the times tables we haven't covered yet due to the related facts e.g. if I know 8 lots of 5 is 40 , I also know 5 lots of 8 is 40 . $\begin{aligned} & 5 \times 8=40 \\ & 8 \times 5=40 \end{aligned}$ Reinforce this with the use of an array. What arrays can you create, what other multiplication facts do you know?
$4 \times$ tables	Build up the $4 x$ table with resources emphasise that we are repeatedly adding another numicon 4 tile. We do not need to start counting from the first tile. If we already know that 4×4 is 16 then to find out 4×5, we add another 4 onto this known fact. As the 4 times table is being built draw out patterns such as the ones column having a pattern of $4,8,2,6,0$.

	Also draw out the generalisation around each multiple of 4 being an even number and why this is the case. Give children $4 x$ table in this format Can they complete answers and write generalisations about the patterns? Can they explain links to the $2 x$ tables?
	$2 \times 1=2$ $4 \times 1=4$
	$2 \times 2=4$ $4 \times 2=8$
	$2 \times 3=6$ $4 \times 3=12$
	$2 \times 4=8$ $4 \times 4=16$
	$2 \times 5=10$ $4 \times 5=20$
	2
	To find out answers to our 4 times table we double the known fact from our 2 times table. To find out 4 times a number we can double that number and double it again. From NCETM - PD materials Complete times tables fact sheet for the $4 x$ table

	Can they solve variation questions and word problems? Missing-number sequences/problems: 'Fill in the missing numbers.' Missing-number/symbol problems: 'Fill in the missing numbers.' $\begin{array}{ll} 3 \times 4=2 \times 4+\square & 6 \times 4=\square \times 4+4 \\ 3 \times 4-\square=2 \times 4 & 6 \times 4-4=\square \times 4 \end{array}$ 'Fill in the missing symbols ($<,>$ or $=$).' $\begin{aligned} & 9 \times 4 \bigcirc 8 \times 4 \\ & 9 \times 4 \bigcirc 8 \times 4+4 \end{aligned}$ From NCETM - PD materials
$8 \times$ tables	Build 8 times table using numicon. Draw out patterns and generalisations in the same way as with the 4 times table. Complete the times table facts map. If I know \qquad I can work out \qquad by \qquad

First 4 Maths

	Make links and connections between the 2, 4 and 8 times table. 'If I can double to work out my 2 times table, double again to work out my 4 times table then I can double again to work out my 8 times table' Variation and word problems. Top to bottom - Mathsticks Make a path from top to bottom Multiples of 8
$3 \times$ tables	Build the $3 x$ tables using counters or numicon. Which ones do you know? We already know $1 \times 3,2 \times 3,4 \times 3,5 \times 3,8 \times 3$ and 10×3 How can we work out the ones that we don't know? If I know 10×3 how can I work out 9×3 ? Use an array of counters, Numicon or a blank number line to support their explanations, e.g. 10×3 - One lot of 3

	Children to complete times table fact sheet. Give sentence If I know \qquad I can work \qquad by \qquad Variation and word problems. Missing-number/symbol problems: 'Fill in the missing numbers.' $\begin{array}{ll} 10 \times 3=9 \times 3+\square & 6 \times 3=\square \times 3+3 \\ 10 \times 3-\square=9 \times 3 & 6 \times 3-3=\square \times 3 \end{array}$ 'Fill in the missing symbols (<, > or =).' $\begin{aligned} & 9 \times 3 \bigcirc 8 \times 3 \\ & 9 \times 3 \bigcirc 8 \times 3+3 \\ & 9 \times 3 \bigcirc 9 \times 3+3 \\ & 9 \times 3 \bigcirc 10 \times 3-3 \end{aligned}$ From NCETM PD materials
Links and development of multiplication	Multiple aerobics. Children count from 1 to 30. In the first round they raise their left hand up for x 2 . In the second round they keep their left hand going for $\times 2$ but now raise their right hand for $x 4$. In the last round they keep their $x 2$ and $x 4$ hands going but now stand for $x 8$. When are you completing all 3 actions? No actions? What do you notice? Complete Venn diagrams e.g. 4 x and 8 x . What do you notice? From NCETM PD materials Can children explain why there are no numbers in the right-hand section of the Venn Diagram?

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Arrays and } \\ \text { the link to } \\ \text { division }\end{array} & \begin{array}{l}\text { Make an array with } 12 \text { counters on a } \\ \text { white board. } \\ \text { Ask children to write at the top of } \\ \text { their whiteboard the calculation that } \\ \text { matches the array that they have } \\ \text { made. } \\ 6 \times 2=12\end{array} \\ & \begin{array}{l}\text { Ask the children to turn the board 90 } \\ \text { degrees and now write the calculation } \\ \text { this this array describes. } \\ 2 \times 6=12\end{array} \\ \text { Ask the children to turn the board } \\ \text { again another 90 degrees. Now start } \\ \text { to circle the groups that they can } \\ \text { see and count how many of those } \\ \text { groups they have - model the } \\ \text { language and how to record this as a } \\ \text { division statement. } \\ 12 \text { made into groups of } 6 \text { has given us } \\ 2 \text { groups. } \\ 12 \div 6=2 \\ \text { Finally rotate the board another } 90 \\ \text { degrees and record the groups that have } \\ \text { been made from the whole and record this } \\ \text { as the final division statement. } \\ 12 \div 2=6 \\ \text { What can the children notice about the } \\ \text { calculations that they have just created? } \\ \text { What sentences can you make from what we have just done? Can they } \\ \text { describe how the same numbers have been used? Do children recognise } \\ \text { that when we multiply these two numbers together, we will get a larger } \\ \text { product. Similarly, do they realise that when we divide we alwas start } \\ \text { with a larger number and end with a smaller number? Try with a different } \\ \text { starting array, can the children write all of the related facts for the array? }\end{array}\right\}$

	Discuss how each yellow counter is 10 times the size of a red counter so we now have one number in the second calculation that is 10 times the size of the number in the first calculation. Because of this our answer will be 10 times bigger too. Use cloze procedures or stem sentences to support. To solve _20_ x _7_ I need to make the number 20 ten times smaller to make this a known fact of _2_ $x_{\neq} 7_{-}=_14_{-}$. I then need to make the answer ten times bigger so _20_ x _ $\mathbf{7}_{-}=$_ 140_{-} What would these calculations look like if put them onto a number triangle? What would the related division facts be?
Scaling	Using a resource such as Cuisenaire or multilink, ask children to compare the size of resources. E.g. how much longer is the red tower than the blue tower? Children can use a bar model to support their understanding of these problems. There are 9 white flowers. There are three times as many red flowers as white flowers. How many red flowers are there? \square
How many ways?	2×5 pieces of numicon plus 2×10 pieces of numicon $=30$ how many other ways could you make 30 using 2 colours of numicon? Children can have a bit of choice about what to wear for PE. You can choose your own colour of top, shorts and socks and you have a choice between blue, white and red. What range of combinations of kit could you have? *This activity also appears in the Y3 Place Value unit. Using the text, one is a snail, ten is a crab, ask questions such as 'I can see 20 legs which animals might I be able to see?'

Using your school progression in calculation document, build children's understanding of how to solve $T U \times U$ - this may include the partitioning method, grid method, expanded compact method and then compact method. You may need to use Place Value counters and other resources to support understanding. E.g.

Children may find it an easier progression to begin by multiplying teen numbers by a single digit as each step can be solved by applying known facts as long as the number being partitioned contains 10 and then one of $2,5,3,4$ or 8 or the single digit number is $2,5,3,4$ or 8 .

When children can partition and multiply teen numbers confidently, progress onto other relevant 2-digit numbers where children would need to use their understanding of scaling.

Be aware that the objective for Y 3 is only $\mathrm{TU} \times \mathrm{U}$

| Use a column method to calculate the following: | |
| :--- | :--- | :--- |
| 123×3 | $324 \times 4 \quad 234 \times 8$ |
| | |

Find the missing digits.

Mastery with Greater Depth

Putting the digits 1, 2 and 3 in the empty boxes, how many different calculations can you make?

Which one gives the largest answer?
Which one gives the smallest answer?

	Mastery
	Roger is laying tiles. He has 84 tiles altogether. How many complete rows of tiles can he make? Mastery with Greater Depth Roger has 96 patio slabs. Using all of the slabs find three different ways that he can arrange the slabs to form a rectangular patio.
Consolidation and problem solving	Do children understand when to use a mental method or a written method for multiplication and division? Sort a list of calculations from easiest to most difficult. Solve word problems for a range of multiplication and division questions. If they are struggling to unpick the calculation, can they use a bar model to support them in developing their understanding of what information they have and where the answer would be on their bar model? https://www.first4maths.co.uk/product/maths-challenges-with-reasoning/ Bipods and Tripods - multiplication
	Questions and Activities to Develop Reasoning Another and Another Give me a number of legs that I could count if I have twice as many bipods as tripods. And another... And another What do you notice? Agree or Disagree? There can never be the same number of bipod legs as tripod legs. Do you agree or disagree? Is It Quicker? Is it quicker to count the legs on 4 bipods and 5 tripods or 6 bipods and 3 tripods? Always Sometimes Never If I have the same number of bipods and tripods, I will an odd number of legs.

	Susie the Snake/Maisie the Mouse - division	
	38 	
	Mastery The following problems can be solved by using the calculation $8 \div 2$. True or false? There are 2 bags of bread rolls that have 8 rolls in each bag. How many rolls are there altogether? A boat holds 2 people. How many boats are needed for 8 people? 1 I have 8 pencils and give 2 pencils to each person. How many people receive pencils? I have 8 pencils and give 2 away. How many do I have left?	
	Sam is planting onions in the vegetable plot in his garden. He arranges the onions into rows of 4 and has two left over. He then arranges them into rows of 3 and has none left over. How many onions might he have had? Explain your reasoning.	

