Planning Overview

Year 6 Decimals and Percentages

Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places Multiply one-digit numbers with up to two decimal places by whole numbers Use written division methods in cases where the answer has up to two decimal places Solve problems which require answers to be rounded to specified degrees of accuracy Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

6NPV-1 Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number 10, 100, 1,000, 1 tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10,100 and 1,000).
6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non-standard partitioning.
6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.
6NPV-4 Divide powers of 10, from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into 2, 4, 5 and 10 equal parts.

	Teaching and Learning Recap Introduction	In Year 5, children will have explored tenths, hundredths and thousandths. The ready to progress statements in Year 5 only require the children to complete decimals up to hundredths. Use the following activity to identify how well the children have retained their knowledge from Year 5. Pair the children to play the following game. They will need a different coloured pencil each. Ask them to decide who goes first. They will take turns to place the numbers below on a O-1 number line. The aim of the game is to position 3 numbers next to each other.
	0.5 0.25 0.75 0.3 0.35 0.9 0.99 0.999 0.1 0.01 0.05 0.79 0.64 0.32 0.54 Make the game progressively harder by giving children a range of number lines to play each round on. The first number line could be between 0 and 1 and have tenths marked on.	

	The second number line could be between 0 and 1 with no markings. The number line for the final round could be a spiral number line. Spiralling Decimals - NRICH Ensure the children are able to complete this activity without the common misconception that that 0.35 is larger than 0.5 for example. Can the children complete the following sentence stems? 0.3 is _tenths 0.3 is _ hundredths 0.3 is _ thousandths Model to the children how to partition the following number in a standard way. 0.875 Eight tenths, seven hundredths and five thousandths $0.8+0.07+0.05$ Then progress to a variety of non-standard ways. 0.875 875 thousandths 8 tenths and 75 thousandths 87 hundredths and 5 thousandths 805 thousands and 7 hundredths 86 hundredths and 15 thousandths 5 tenths and 375 thousandths Can they now do the same with 0.657 ? If the children are struggling to understand the relationship between tenths, hundredths or thousandths, consider tracking back to the Year 4 or 5 planning units.

$\begin{aligned} & \text { x10, } 100 \text { and } \\ & 1000 \end{aligned}$	Show the children the chart below which they should have seen in Year 5 (taken from the NCETM Professional Development Materials). Ask them if they can use the sentence stems to discuss relationships. \qquad \qquad is ten times smaller than/one tenth the size of \qquad \qquad is one hundred times bigger than \qquad \qquad is one hundred times smaller than/one hundredth the size of _. \qquad Provide the children with a number that involves a decimal. e.g. 3.45 Using a place value chart, ask them to complete the following questions. Some children may need place value cards to physically move on the chart others may not. $\begin{aligned} & 3.45 \times 10= \\ & 3.45 \times 1000= \\ & 3.45 \div 10= \end{aligned}$ What happens to the digits? Why? Provide the children with a range of fluency questions where they are asked to multiply and divide by 10,100 and 1000 involving decimals numbers. Encourage the children to be able to convert between measures, applying this skill. Can the children find their way through the grid to make the highest possible product? What about the lowest possible product?						

	What mistakes have these children made? 1645.456 a) Jack rounds this number to the nearest hundred. His answer is 1645.46 b) Annie rounds this number to the nearest tenth. Her answer is 1650 c) Ezra rounds this number to the nearest whole number. His answer is 1645.056
Link decimals to calculation - Adding and subtracting	In Year 5, children will have learnt how to add and subtract decimals using mental strategies. Ensure that these strategies have been retained. They should be able to answer questions such as the sample SATs questions below.
	Circle two numbers that add together to equal 0.25
	$\begin{array}{lllll}0.05 & 0.23 & 0.2 & 0.5 & \overline{1 \text { mark }}\end{array}$
	Two decimal numbers add together to equal 1 One of the numbers is 0.007
	What is the other number?
	Complete the second part of this question.
	Mastery
	Choose digits to go in the empty boxes to make these number sentences true. $\begin{aligned} & 14781-6 \square 53=8528 \\ & 23 \cdot 12+22 \cdot \square=45 \cdot 23 \end{aligned}$
	In Year 6, they will need to be able to add and subtract decimals using the formal written methods of column addition and column subtraction. This should include addition several numbers with different numbers of decimal places (including in the context of measures and money).
	Tenths, hundredths and thousandths should be correctly aligned, with the decimal place lined up vertically, including in the answer row. Zeros should be added into empty decimals places to show there is no value to add.

\begin{tabular}{|c|c|}
\hline \& Mastery with Greater Depth

\hline \& \begin{tabular}{l}
Can you use five of the digits 1 to 9 to make this number sentence true?

\square $+$ \square $=31 \cdot 7$

Can you find other sets of five of the digits 1 to 9 that make the sentence true?

Two numbers have a difference of $2 \cdot 38$. What could the numbers be if:

1 the two numbers add up to 6?

one of the numbers is three times as big as the other number?

Two numbers have a difference of $2 \cdot 3$. To the nearest 10 , they are both 10 . What could the numbers be?
\end{tabular}

\hline Link decimals to calculation - Multiplying \& | In Year 5, children will have used their known facts to complete multiplication questions involving decimals. Ensure that the children have retained this knowledge so they are able to answer the questions below. $0.5 \times 28=\quad 3.1 \times 30=\quad 0.9 \times 600=\quad 0.6 \times 200=$ |
| :--- |
| The children can build on this knowledge by completing 'Route Product' from NRICH. |
| There are lots of different routes from A to B in this diagram: |
| The idea is to work out the product of the numbers on these different routes from A to B. Let's say that in a route you are not allowed to visit a point more than once. |
| For example, we could have 3×0.5 but we couldn't have $3 \times 2 \times 5 \times 4 \times 1 \times 0.1$ because that route passes through A twice. |
| Which route or routes give the largest product? |
| Which route or routes give the smallest product? |
| Do you have any quick ways of working out the products each time? |
| Children will now need to apply their knowledge of short multiplication to multiply numbers with more than 4 digits by a onedigit number, to multiply money and measures and to multiply decimals with up to 2 decimal places by a single digit. |

\hline
\end{tabular}

Link decimals to calculation - dividing	In Year 5, children will have used their knowledge of known facts to divide mentally. Ensure that children have retained this knowledge before moving on. Children will build on their use of short division and learn how to divide decimals by one-digit numbers. Provide the children with fluency questions to practise this skill. e.g. a) $5.64 \div 3=$ Encourage the children to apply this skill to solving problems, $96.75 \div 5=$ involving measure and money. e.g. A carpenter cuts up a piece of wood in to 6 equal sections. The original length of the wood is 14.34 m. the pieces once the wood has been cut? the length of each of
4 watermelons cost $£ 3.40$. Calculate the cost of 1 watermelon. Sample SATs questions	
A packet contains 1.5 kg of oats.	
Every day Maria uses 50 g of oats to make porridge.	

Exploring

percentages | Recap from year 5 how made with 20 cubes. |
| :--- |
| number by halving and halving again (to find a quarter), 10% of a |
| number by dividing by 10 and 1% of a number by dividing by 100 . |

Link finding percentages to measure	Complete problems involving finding fractions of measures in context. Would You Rather? Age 7 to 11 If you are working in the USA units then go to Would you rather...... Have 10% of $£ 5$ or 75% of 80 p? Be given 60% of 2 pizzas or 26% of 5 pizzas? Be bitten by 15% of 120 mosquitoes or 8% of 250 mosquitoes? Skip using a rope which is 54% of 105 cm long, or 88% of 2.75 m long? Sit in a traffic jam for 33% of 2 hours or 44% of 1 hr 40 mins ?

