Planning Overview

Year 6 Fractions

Use common factors to simplify fractions; use common multiples to express fractions in the same denomination
Compare and order fractions, including fractions > 1
Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $41 \times 21=81$]
Divide proper fractions by whole numbers [for example, $31 \div 2=61$]
Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, $8 \div 3$]

6F-1 Recognise when fractions can be simplified, and use common factors to simplify fractions.
6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.
6F-3 Compare fractions with different denominators, including fractions greater than 1 , using reasoning, and choose between reasoning and common denomination as a comparison strategy

	Teaching and Learning
Equivalent fractions	In Year 5, children will have found equivalent fractions where the denominators are multiples of the same number. The children will need to build on this knowledge to find equivalent fractions with different denominators. Ask children to remind you what they know about equivalent fractions. What is the rule that they learnt? How many equivalent fractions can you find to the fraction $\frac{4}{5} ?$ Ensure children are confident to apply their learning to be able to solve SATs style questions before moving on. e.g. $\frac{1}{3}$

	Tick two shapes that have $\frac{3}{4}$ shaded.
	 Encourage the children to apply their knowledge of equivalent fractions to convert two fractions so that they have the same denominator. e.g. $\frac{2}{3}$ and $\frac{3}{4}$ What are you using your knowledge of here? Ensure the children know that they are applying their knowledge of common multiples.
Simplifying fractions	Show the children two fractions that are equivalent. $\frac{2}{5}=\frac{4}{10}$ What has happened here? The numerator and denominator of the first fraction have been multiplied by 2 . Ask the children what they would have done if they started with $\frac{4}{10}$. They would have divided the numerator and denominator by 2 because 2 is a common factor. Explain that this is called simplifying. Children need to know: A fraction can be simplified when the numerator and denominator have a common factor other than 1. Explore the example $\frac{4}{12}$. Show the children that you can simplify in one step or in two.

	Allow the children to apply their knowledge to simplifying improper fractions and mixed numbers. e.g. Figure 23: simplifying $\frac{20}{12}$ to $\frac{5}{3}$, then converting to a mixed number Figure 24: converting $\frac{20}{12}$ to $\frac{5}{3}$, then simplifying Taken from - mathematics guidance: Key Stage 1 and 2 - Non-statutory guidance for the National Curriculum in England. Children should learn that when the numerator and denominator of a fraction have no common factors (other than 1) then the fraction is in its simplest form. Ask the children how can you ensure that you have converted a fraction into its simplest form? "To convert a fraction to its simplest form, divide both the numerator and the denominator by their highest common factor." Provide children with a set of fractions and ask them to sort them whether they are in their simplest form or not, including mixed and improper fractions.
	In its simplest form \quad Not in its simplest form
	Ask them to prove why they are not in their simplest form. Sample SATs question Write the two missing values to make these equivalent fractions correct. $\frac{\square}{30}=\frac{10}{12}=\frac{30}{\square}$

	How much water is in this beaker? Write your answer as a fraction of a litre in its simplest form.
Compare fractions including fractions >1.	In Year 5, children will have learnt how to convert between improper fractions and mixed numbers. Ensure the children have retained this knowledge before moving on. First explore which fraction is larger when the numerators are the same. $\frac{2}{5} \text { or } \frac{2}{6}$ Which fraction is larger? How do you know? You could show this with a bar model to support. $\frac{2}{5}>\frac{2}{6}$ Figure 27: bar models to compare $\frac{2}{5}$ and $\frac{2}{6}$ Taken from - mathematics guidance: Key Stage 1 and 2 - Non-statutory guidance for the National Curriculum in England. When the numerators are the same, we can order the fractions without doing any calculating. Remind children that the larger the denominator, the smaller the fraction. Therefore, $\frac{3}{7}$ is less than $\frac{3}{5}$. Jess writes this. Explain how you know she is correct. $\frac{3}{4}>\frac{3}{7}$

	Sample SATs style question. Mastery with Greater Depth Only a fraction of each whole rod is shown. Using the given information, identify which whole rod is longer Explain your reasoning.
Order fractions including fractions >1.	The children can now apply their knowledge of equivalent fractions and simplifying to order fractions with different denominators where there are more than 2 fractions. Ask children to roll a 1-12 dice four times to create a set of three fractions. They must then order them from the smallest to largest. Simplify these fractions first. What do you notice? Why will it now be easy to order them from largest to smallest? $\begin{array}{llllll} \frac{3}{18} & \frac{5}{20} & \frac{4}{8} & \frac{2}{18} & \frac{4}{12} & \frac{6}{60} \end{array}$ Sample SATs style question Here are four fraction cards. Use any three of the cards to make this correct.

	Now give examples where there are several improper fractions and several mixed numbers to order. e.g. Order these in ascending order. $\begin{array}{llll} \frac{5}{4} & \frac{7}{2} & \frac{8}{5} & \frac{19}{10} \end{array}$ Order these in descending order. $1 \frac{1}{4} \quad 1 \frac{2}{3} \quad 1 \frac{5}{6} \quad 2 \frac{1}{3}$ Ask the children to complete questions where there is a mix of proper fractions, improper fractions and mixed numbers where the denominators differ. $1 \frac{2}{3} \quad \frac{7}{12} \quad \frac{7}{8} \quad \frac{8}{3} \quad \frac{23}{24} \quad 1 \frac{9}{12}$ Can they order any without converting to a common denominator? Explain. Find two fractions that make this correct. The denominators have to be different. Find three different examples. Add fractions to the boxes below so that they are ordered from the smallest to the largest. $\frac{3}{8} \square \frac{1}{2} \quad \frac{7}{10} \quad \frac{4}{5}$
Add and subtract fractions	In Year 5, the children will have practised adding and subtracting fractions whose denominators are all multiples of the same number, including mixed numbers. Show the children the question below. Why is this difficult? Ask them to discuss how they can use their previous learning to help them to solve the problem. $\frac{1}{2}+\frac{1}{3}=$ The children will need to convert them both into fractions with a common denominator and then they can add the fractions.

First 4 Maths

Multiplying pairs of proper fractions	Ensure that children have recalled how to multiply proper fractions and mixed numbers by whole numbers from Year 5. Paper folding To find $\frac{3}{4} \times \frac{1}{2}$ we are finding $\frac{3}{4}$ of $\frac{1}{2}$ Ask children to fold a piece of A4 paper in half lengthways and shade $\frac{1}{2}$ of the paper:
	Now fold the same paper into quarters cross ways by folding in half and half again to make four equal parts and shade $\frac{3}{4}$ in a different colour:
Repeat with other examples.	
out of 8 parts are shaded so $\frac{3}{8}$ is the answer to $\frac{3}{4}$ of $\frac{1}{2}$	
The paper now shows $\frac{3}{4}$ of $\frac{1}{2}$ in the parts that are shaded in both	
colours.	
Ask children how many parts are shaded in both colours? 3	

Taken from NCETM PD materials

Provide children with a list of calculations that they have represented in this way. What do they notice?
e.g.

$$
\begin{array}{ll}
\frac{1}{2} \times \frac{1}{4}=\frac{1}{8} & \frac{1}{4} \times \frac{1}{2}=\frac{1}{8} \\
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6} & \frac{1}{3} \times \frac{1}{2}=\frac{1}{6} \\
\frac{1}{2} \times \frac{1}{6}=\frac{1}{12} & \frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \\
\frac{1}{3} \times \frac{1}{5}=\frac{1}{15} & \frac{1}{5} \times \frac{1}{3}=\frac{1}{15}
\end{array}
$$

What do children notice? Encourage them to see that the numerators have been multiplied and so have the denominators.

Repeat the activity for other pairs of fractions where the numerators are note one, including where a simplification of the final fraction is needed.
$\frac{3}{4} \times \frac{2}{3}=\frac{6}{12}=\frac{1}{2}$

James says that the answer to the question below is one quarter. Is he correct? Explain your thinking.

$$
\frac{1}{3} \times \frac{3}{4}=
$$

Always/sometimes/never

Steven says that when you multiply two proper fractions, the answer gets smaller. Is this always, sometimes or never true?

EXPLORE

Find as many possibilities as you can for solving the above using four different digits in each calculation. Which digit cards cannot be used? Why can these not be used?

Suggested answers
$\frac{7}{8} \times \frac{2}{4}=\frac{21}{48}=\frac{7}{16}$

$$
\begin{aligned}
& {\left[\frac{7}{8} \times \frac{1}{2}\right]=\frac{7}{16} \quad\left[\frac{7}{8} \times \frac{2}{4}=\frac{7}{16}\right.} \\
& \text { (3)(3)(4) } 5(3)(3)
\end{aligned}
$$

TAKING IT FURTHER

Do you agree or disagree with this statement?
There are no proper fractions that can be multiplied together when finding all possibilities, that will use all of the digit cards.

Suggested starting point

\times
 $\frac{1}{2}$ \square \square $=\frac{2}{4}$ \square \times \square $=\frac{3}{6}$

As the children work through the possibilities, they will see that the digit 5 and 9 cannot be used as part of the answer.

OUTCOME

Children will recognise the correlation between factors and multiples when multiplying fractions by fractions.

Divide prope fractions by whole numbers	Use the following representation to recap what the children have learnt about multiplying fractions. There are two ways that they know of to represent one half of $\frac{1}{4}$.$\frac{1}{4} \times \frac{1}{2} \text { or } \frac{1}{2} \times \frac{1}{4}$1 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$1 $\overline{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ 1 $\overline{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $? ~$ 1 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ 1 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ Taken from NCETM PD materials Ask the children if they can think of another way to halve numbers in maths. Children should be able to say that you can divide by two. Show them the equation $\frac{1}{4} \div 2=$. Discuss with the children how it relates to the bar models above. $\frac{1}{4} \div 2=\frac{1}{8}$ Look at the two methods side by side. $\begin{aligned} & \frac{1}{4} \times \frac{1}{2}=\frac{1}{8} \\ & \frac{1}{4} \div 2=\frac{1}{8} \end{aligned}$ What is the same? What is different?

Draw a diagram to represent this division:
$\frac{1}{4} \div 3=$
Ask the children what division question can be used to represent the following multiplication.

$$
\frac{1}{3} \times \frac{1}{4}=
$$

Provide the children with fluency questions to divide proper fractions by whole numbers.

'Fill in the missing numbers.'

$$
\begin{aligned}
& \frac{1}{8} \div 3=\frac{1}{8} \times \square \times \square \\
& \frac{5}{9} \div 2=\frac{1}{9} \div 4=\square \\
& \frac{1}{9} \times \frac{1}{7}=\frac{1}{4} \div \frac{2}{7} \div \square \\
& \frac{3}{3} \times \square
\end{aligned}
$$

Taken from NCETM PD materials

Now move on to examples where the numerator is a multiple of the divisor. Show the children that another way to use pictures to support division of fractions is a number line - this helps to make the link with repeated subtraction and reinforces the concept of a fraction as a number with a numerical value.

Draw a number line from 0 to 1 .
Divide the number line into the number of parts for your fraction e.g. five parts for fifths.
Mark your fraction on the number line.
Jump back (or forwards) in equal steps to (or from) zero.
Use your number line to work out the value of each step.

	Ask children how this number line shows that $\frac{3}{5} \div 3=\frac{1}{5}$. Each of the 3 repeated subtraction steps represent $\frac{1}{5}$. When would this method work and when would it not? Try to get the children to spot that the numerator is a multiple of the divisor. Together go through some examples where the numerator is a multiple of the divisor. Always/sometimes/never Ben says that when you divide a proper fraction by a whole number, you only divide the numerator. Is this always, sometimes or never true? Explain. (Here you will be looking for the children to explain that when the numerator is a multiple of the divisor, this method would work. However, when it is not, the previous method is needed.) Use the digits $1,2,3,4$ and 5 to make a proper fraction and a whole number to divide: $\frac{?}{?} \div$? What is the biggest quotient (answer) you can make? What is the smallest?
	Mastery
	In each number sentence, replace the boxes with different whole numbers less than 20 so that the number sentence is true. $\begin{aligned} & \frac{1}{\square} \times \frac{3}{\square}=\frac{\square}{\square} \\ & \frac{\square}{\square} \times \frac{\square}{\square}=\frac{8}{15} \\ & \frac{2}{\square} \times \frac{5}{\square}<\frac{10}{\square} \end{aligned}$ \square $\div 3=$ \square \square $\div 3>\frac{1}{4}$

Associate a fraction with division and calculate decimal fraction equivalents.	Now ask the children to sort these calculations and explain why they have chosen to put them in each of the sections. Ensure that they solve the calculations also.$\begin{array}{llll} \frac{12}{15} \div 3 & \frac{12}{15} \div 5 & \frac{6}{7} \div 3 & \frac{6}{7} \div 4 \\ \frac{7}{18} \div 2 & \frac{10}{11} \div 5 & \frac{56}{65} \div 7 & \frac{54}{56} \div 7 \end{array}$Numerator is a multiple of the divisor Numerator is not a multiple of the divisor Mastery with Greater Depth True or false? The sum of two fractions is always greater than their product. If I divide a fraction by a whole number, the quotient is always smaller than the dividend. Explain your reasoning. Complete the second bullet point of this question. If you have children who are confident with the formal written method of division and secure in their understanding of applying this to decimals, you may want to cover this here. If not, this will be covered in the decimals and percentages unit.		

