Planning Overview
 Year 6 Geometry

Draw 2-D shapes using given dimensions and angles
Recognise, describe and build simple 3-D shapes, including making nets
Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
Describe positions on the full coordinate grid (all four quadrants)
Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.

6G-1 Draw, compose, and decompose shapes according to given properties, including dimensions, angles and area, and solve related problems.

Draw and compose 2D shapes	Recap how to use a protractor to measure and draw angles from previous curriculum. Use the Protractor ITP for support teaching this.
Recap perimeter, area, angles, lines and length using SATs questions	
such as those below.	
If additional teaching is needed then track back to Year 3, 4 or 5	
geometry plan.	

19 The area of a rugby pitch is 6,108 square metres.
A football pitch measures 112 metres long and 82 metres wide.

How much larger is the area of the football pitch than the area of the rugby pitch?

20

A square tile measures 20 cm by 20 cm .
A rectangular tile is 3 cm longer and 2 cm narrower than the square tile.

What is the difference in area between the two tiles?
Ask the children to use their conceptual understanding of the above concepts to draw shapes that fit certain criteria e.g.

- Draw a rectangle on squared-centimetre paper with a perimeter of 18 cm
- Draw a square with 3 cm sides
- Draw an isosceles triangle where the bottom 2 angles are 40 degrees each.
- Draw a pentagon, on squared-centimetre paper, with an area of 15 cm 2

Compare and classify geometric shape based on their properties	Triangles Recap types of triangles from the previous curriculum. Ask children to create definitions for each type of triangle and use these definitions to help them to categorise a selection of triangles. 'Interactive triangles' on mathsisfun.com may help some children create definitions
triangles	Any Scalene Triangle No equal angles and no equal sides
	Scalene
	Isosceles
	Equilateral 68°
	Right
	Acute
	Obtuse
	© 2021 Mathslsfun.com v0.923 Angles Sides Reset
	Mastery
	Which of these triangles are isosceles? Explain your decisions.
	Ask children to sort triangles into Venn diagrams. Can children make predictions about their Venn diagram before they start sorting?

Children to sort triangles into a Carroll diagram. This interactive Carroll diagram on mathsframe.co.uk allows children to pick their own sorting criteria. CHOOSE EITHER ONE OR TWO CONDITIONS TO SORT THE SHAPES Is it a triangle? Is it an equilatéral triangle? Is it a quadrilateral? Is it a scalene triangle ? . Is it a pentagon? Is it an isosceles triangle? Is it a hexagon? Does it have a right angle? Is it a heptagon? Does it have an obtuse angle ? Is it an octagon? Does it have a reflex angle? Is it a parallelogram? Does it have an acute angle? Is it a rhombus? Does it have parallel sides? Is it a kite? Does it have perpendicular sides? Is it a trapezium? Does it have 1 or more lines of symmetry? Is it a regular shape? Does it have $\mathbf{2}$ or mare lines of symmetry? Ask the children to use their understanding about triangles to complete reasoning activities Who am I? I have one right angle and no equal sides. Who am I? I have a pair of equal sides and two angles of 45 degrees. Who am I? I have one angle of 80 , one of 40 . Who am I? Possible or impossible? I am isosceles and have two right angles. Is this possible? I am equilateral and two of my angles are 45 . Is it possible? I am scalene and have one right angle and one obtuse angle. Is it possible? What's my angle? I am a right-angled scalene triangle. One of my angles is 25°. What is the other? I am isosceles. One of my angles is 30°. What could my other two be? I am isosceles. All three angles are acute - what could they be?

	NRICH - 9 pin triangles (easier problem) Nine-pin Triangles Age 7 to 11 Challenge Level How many different triangles can you make on a circular pegboard that has nine pegs? You may like to use the interactivity to try out your ideas. Click on two of the dots to create a line between them. If you prefer to work on paper, you might find this sheet of nine-peg boards useful. NRICH - Triangles all around (harder problem) Triangles All Around You might like to have a look at Nine-Pin Triangles before trying this problem. How many different triangles can you draw on a circular pegboard which has four equally spaced pegs? What are the angles of each triangle? If you have a six-peg circular pegboard, how many different triangles are possible now? now? What are their angles? How many different triangles could you draw on an eight-peg board? Can you find the angles of each? You may like to use the interactivity to try out your ideas. When you have selected the number of dots you need, select the line drawing tool, then click on two dots to draw a line between them.
Compare and classify geometric	Quadrilaterals Consider the definitions for common quadrilaterals. Children to match definitions to shapes.
on their properties and sizes quadrilaterals	Opposite sides equal, opposite Parallelogram sides parallel, opposite angles equal, diagonals bisect each other Put the children into pairs. Ask one child to think of a quadrilateral. The other child gets to ask up to 3 'yes or no' questions to find out what the mystery quadrilateral is.

	24 There are equally placed twelve points on this circle. Join any six points to make a regular hexagon in this circle. Use a ruler. Children can sort polygons in a similar way to how they sorted triangles and quadrilaterals Always, sometimes, never Is it always, sometimes or never true that the number of lines of reflective symmetry in a regular polygon is equal to the number of its sides n .
Find missing angles on a straight line or in a circle	Recap learning from year 5 around angles on a straight line. Give children a protractor and ask them to explain how they know that a straight line is 180 degrees using the concrete resource in their hands. Spot the mistake Sam says that these angles are all correct. Is he right to think this? do we need to measure each angle to know if he is correct or not?
	$\begin{aligned} & a=90 \\ & b=45 \\ & c=35 \end{aligned}$ Teach children strategies for identifying a missing angle on a straight line - possibly using a bar model Our whole would be 180 degrees. Our angles are all parts. We know 2 of those parts so would need to add those together and then subtract that amount from our whole. To check we can add all of the parts together and make sure that they equal 180°
	180°
	$30^{\circ} \mathrm{b}=$? ${ }^{\circ} \mathrm{5}{ }^{\circ}$

Recognise missing angles triangles and quadrilaterals	Show children a range of triangles and quadrilaterals with their angles marked on and labelled. What do children notice about all of the angles in a triangle and all of the angles in the quadrilaterals? Ask them to write a mathematical generalisation about angles in a triangle and angles in a quadrilateral. 'The sum of all angles in a triangle is 180° 'The sum of all of the angles in a quadrilateral is 360°
Find the value of \mathbf{y} in the following triangle.	
In the below question make sure that children understand that the	
opposite angle to the 38° angle is also 38°. Both of these are on a	
straight line with a so $38^{\circ} \times 2$ needs to be taken away from 180°.	

15 A shaded isosceles triangle is drawn inside a rectangle.

Calculate the size of angle \boldsymbol{a}.

26
Here is an equilateral triangle inside a rectangle.

Calculate the value of angle \boldsymbol{x}.
In this question make sure that children understand that we need to consider the square and that each of the angles of the square are 90°. We also need to understand that this is an equilateral triangle and so each of the triangles angles are 60° (because 180 divided equally into 3 is 60) 60° and 12° gives us 72° and if we then subtract 72 from 90 we can find out the value of x.

Work out the missing angles in the following diagram.

In this isosceles triangle 2 sides and 2 angles are equal. We know that the other angle in the triangle is 63° so $180^{\circ}-63^{\circ}$ and that

	answer divided by 2 will give us angles a and c . Angles c and d will total 180° so we can then work out angle d and angle a and b are diagonally opposite so will be equal. $\begin{aligned} & a=\square \quad \frac{0}{1 \text { mark }} \\ & b=\square \frac{\circ}{1 \text { mark }} \end{aligned}$
	90 90 180 b 360
	Mastery with Greater Depth A triangle has been drawn carefully. You are told that the biggest angle is 20° larger than the second biggest angle and 40° larger than the smallest angle. Work out how big each angle is.
Find unknown angles in regular polygons	How can we use triangles to help us to calculate the interior angles of a regular polygon? Demonstrate to children how we can turn regular polygons into several small triangles and then using what we know about triangles can use that to calculate the sum of that polygon's interior angle.

	Give each child a reg lines to cut the hexag The children will end up how many triangle if we know that each that to calculate the $180^{\circ} \times 4=720$ Repeat with a regular Children to complete shapes	ular hexagon. Ask the c n into triangles. p with something like they have made out riangle has internal an otal of internal angles pentagon, heptagon, a table as they are inv	idren to use straight s. Ask them to count their hexagon and how es of 180° we can use the regular hexagon. agon, nonagon, etc. tigating each of these
	Number of sides of the shape	Number of triangles created from the shape	Total interior angle of the regular polygon
	6	4	720
	5		
	7		
	Encourage the childre sides of the regular p mode out of that poly	to notice a pattern ygon and the numbe on.	do with the number of f triangles that can be

	'I have noticed that the number of triangles that you can make out of a regular polygon is always 2 less than the number of sides the polygon has got' Can the children turn this into a formula to calculate the internal angle of any regular polygon? Number of sides on the regular polygon $-2 \times 180^{\circ}=$ internal angle of the regular polygon. Sam says 'The interior angles of a regular decagon are 1800° Is he correct? How do you know? Mastery with Greater Depth This is a regular pentagon. Two angles (108° and 36°) are shown. Which other angles can you work out? Explain your reasoning.
Illustrate and name parts of circles, including radius, diameter and circumferenc e and know that the diameter is twice the radius	Introduce the children to the different measurable parts of a circle. All circles have a circumference, diameter and radius. They can be measured using a ruler or tape measure. - The circumference is the distance all the way around a circle. - The diameter is the distance right across the middle of the circle. - The radius is the distance halfway across the circle. The radius is always half the length of the diameter. BBC bitesize has a useful video to support this new learning

Describe positions on the full coordinate grid (all four quadrants)

Introduce children to a 4 quadrant grid. Ask the children what they can see that is the same as the single quadrant grids that they have been used to seeing in previous year groups and what is different?

Images taken from Coordinates ITP - available on mathsframe.co.uk

Position a point on a 4 quadrant grid and ask children what they think the coordinates of that point are. Allow time to address misconceptions such as reading the y coordinate first rather than the x coordinate or forgetting to use the - when locating a point in the negative section of the quadrant.

Sam says 'point a is at position $(4,5)$ because I have read along to marker 4 and down to marker 5^{\prime}

Is he correct?

5 Here is a shape on a square grid.
Reflect the shape in the mirror line.
Use a ruler

$\overline{1 \text { mark }}$

Mastery

Are these statements always, sometimes or never true?

- If a shape is reflected in an axis, it stays in the same quadrant.
- If a shape is translated to the right and up, it stays in the same quadrant.
- If a shape is translated to the left and down, it stays in the same quadrant.

Explain your decisions.

Mastery with Greater Depth

Joan says that if you reflect a shape (in an axis) and then reflect it again, the shape always ends up back where it first was as though you'd done nothing to it.

Do you agree with Joan?
Explain your decision.
Discuss with the children that it is possible to both translate and reflect a shape in a 2-part problem. Allow children to work through these types of questions.

13
Look at each of these diagrams.
Put a tick $($ i iti is the net of a square based pyramid.
Put a coss ((i i it is not.

