Planning Overview
 Year 6 Measures

Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate
Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
Convert between miles and kilometres
Recognise that shapes with the same areas can have different perimeters and vice versa
Recognise when it is possible to use formulae for area and volume of shapes
Calculate the area of parallelograms and triangles
Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres (m^{3}), and extending to other units [for example, mm^{3} and km^{3}].

6NPV-1 Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number $10,100,1,000,1$ tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10,100 and 1,000). 6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non-standard partitioning.
6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.
6NPV-4 Divide powers of 10, from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts.

Consider links to PE/Sports Day, Olympics/Commonwealth Games

	Teaching and Learning
Converting metric measures using decimal notation up to 3dp	Ensure children can recall the common metric conversions from Year 5 and which units are used for each type of measure.
Give children cards with words (metre, litre, millilitre etc.) on and abbreviations ($\mathrm{mll} \mathrm{l} \mathrm{kg} \mathrm{g} \mathrm{m} \mathrm{mm} \mathrm{cm} \mathrm{km)} Ask children to sort them in as$. many ways as they can think of. Explain how they have sorted them. Do they sort by type of measure e.g. mass, capacity or relative sizes e.g. thousandths ? Extend to odd one out discussions. Length has many more common metric units. Why?	

	What's the same and Pupils should confidently apply them to whole nu and vice versa, for exa 5NPV-5 Teaching gu Pupils should first memori $\begin{aligned} & 1 \mathrm{~km}=1,000 \mathrm{~m} \\ & 1 \text { litre }=1,000 \mathrm{ml} \end{aligned}$ Move onto converting another. Use pattern sp $\begin{aligned} & 1 \mathrm{~km}=1000 \mathrm{~m} \\ & 2 \mathrm{~km}=2000 \mathrm{~m} \\ & 1.6 \mathrm{~km}=1600 \mathrm{~m} \\ & 2.6 \mathrm{~km}=2600 \mathrm{~m} \\ & 2.63 \mathrm{~km}=2630 \mathrm{~m} \\ & 2.68 \mathrm{~km}=2680 \mathrm{~m} \\ & 2.685 \mathrm{~km}=2685 \mathrm{~m} \end{aligned}$ Can children generate/ an unknown conversion	dance e the followi otting to		mm 000 millilitres 000 ions below from Year 5 and from larger to smaller units nd $8,000 \mathrm{~g}=8 \mathrm{~kg}$. ersions: $\begin{aligned} & 1 \mathrm{~cm}=10 \mathrm{~mm} \\ & £ 1=100 \mathrm{p} \end{aligned}$ to 3dp from one unit to this. they generate the rule for
Reading scales in different units with divisions in 2,4,5 or 10 equal parts	Look at models like the one below that incorporate converting from one unit to another and breaking the whole unit into different numbers of parts.			
	1km			
	0.5 km		0.5 km	
	1/2km		$1 / 2 \mathrm{~km}$	
			500m	
	0.25 km	0.25 km	0.25 km	0.25 km
	250m	250m	250m	250m

Convert between miles and kilometres	Using the known fact that $8 \mathrm{~km} \approx 5$ miles, what other facts can you generate? $\begin{aligned} & 16 \mathrm{~km}=\square \text { miles } \\ & 4 \mathrm{~km}=\square \text { miles } \end{aligned}$ Can you generate a rule for converting km to miles? How would we convert the other way around from miles to km? Compare different methods i.e. divide by 5 then multiply by 8 or use 1 mile $\approx 1.6 \mathrm{~km}$ Agree or disagree? It is easier to convert from miles to km than km to miles. Explain your answer. Always, sometimes, never When converting from miles to km it is easier to multiply by 1.5 then add the extra tenths on at the end. Complete conversion tables for miles to km and vice versa. e.g.
	100 miles $100 \div 5=20$ 160 km $20 \times 8=160$
	120 miles
	150 miles
	125 miles
	155 miles
	You could link this to a school trip or event to make it more meaningful. Use < > or = to compare these distances 50 miles $\square 50 \mathrm{~km}$ 200 miles $\square 350 \mathrm{~km}$ 160 miles $\square 240 \mathrm{~km}$ Chester is 46 miles away from Shrewsbury and 72 km from Manchester. Which place is closer to Chester? Toni is training for the Marathon. She runs 45 miles altogether spread over 3 days. On the first day she runs 16 km . On day 2 , she runs 10 miles further than she did on day 1 . How far does she run on the third day? Give your answer in miles and in kilometres. If the speed limit in Spain is 120 km per hour and the speed limit in the UK is 70 miles per hour, where can you drive faster?

Convert between different units of time	Discuss units of time and conversions - Years to months/weeks - Weeks to days - Days to hours - Hours to minutes - Minutes to seconds Children to solve questions around converting units of time using efficient calculation strategies Mastery Draw a clock face, then draw the hands showing that the time is 3 p.m. Draw a second clock face, then draw the hands showing the time 12000 seconds later. Mastery A train left London at 09:46 and arrived in Edinburgh later that day. The clock in Edinburgh station showed this time: How long did the train journey last? Mastery with Greater Depth Mehvish and Rima are looking at a clock face. They agree that at midday the hands of the clock lie on top of each other and so the angle between them is 0°. Rima thinks that at 3:15 p.m. the angle between the hands will be 90°. Mehvish thinks that the angle will be less than 90°. Mastery with Greater Depth Imagine we talked about time using decimals. Would 2.3 hours be: 12 hours and 3 minutes 12 hours and 20 minutes -2 and a half hours, or 2 hours and 18 minutes? Explain your decision.
Recognise that shapes with the same areas can have different perimeters and vice versa	Ask pupils to draw a shape on squared paper with a defined perimeter. E.g. draw a rectangle with a perimeter of 14 . Link back to problems with more than 1 unknown. Choose a value for one of the variables (e.g. width could be 2) then calculate the other variable. How many different rectangles can you draw with a perimeter of 14 cm ? What is the area for each of your solutions? Similarly draw a shape with a specific area. e.g. draw a pentagon with an area of $10 \mathrm{~cm}^{2}$. Can you draw another one? What is the perimeter for each solution?

	Move onto comparing the area of a triangle with the area of the rectangle that would be created if you drew in 2 extra lines to create it. What do you notice? Does it always happen? Could you create a formula to represent this?
	 There is a great video that offers some useful visuals to explain this on BBC bitesize

| How does the height of the rectangle relate to the triangle? Establish |
| :--- | :--- |
| that it is the perpendicular height of the triangle rather than the length |
| of one of the sides that matches the height of the rectangle. |
| What happens if a triangle is presented in a different orientation? Now |
| the vertical side lines up with the rectangle's height. We need to find |
| the equivalent to the rectangle's length. |

	If we know what the area of a triangle is and one of the measurements of either the base or the height then could we work out the missing measurement by working backwards? $A=44 \mathrm{~m}^{2}$. How long is the base? NCETM PD Materials We would need to divide 44 by 8 to get 5.5 and then multiply this by 2 to get our missing length of 12 m . Children can now draw triangles with a given area. e.g. Can you draw a triangle with an area of $10 \mathrm{~cm}^{2}$? On the grid draw a triangle with the same area as the shaded rectangle. Use a ruler.
Calculate the area of parallelograms	Look at parallelograms on squared paper. Using the idea of perpendicular height from work on triangles draw in this line. Children can then cut off the triangle and see how they can move the triangle to the other end to complete a rectangle. Repeat with different parallelograms.

Calculate, estimate and compare volume of cubes and	Use $1 \mathrm{~cm}^{3}$ cubes (for example dienes) to create cuboids. How many different cuboids can you make with a volume of $24 \mathrm{~cm}^{3}$? What is the width, length, height of each?
	Recap how to record what they have made/measured using
	Fluency questions based on calculating the volume of images of 3D constructions made from 1 cm cubes and comparing volumes of two different constructions using < > and = signs.
	Move from constructions made from 1 cm cubes to cuboids with dimensions recorded in other cubic measures e.g. m^{3} or mm^{3}. Calculate volume using width \times length \times height=volume. SATs Question
	23 Amina made this cuboid using centimetre cubes.
	Stefan makes a cuboid that is 5 cm longer, 5 cm taller and 5 cm wider than Amina's cuboid.
	What is the difference between the number of cubes in Amina's and Stefan's cuboids?

	NRICH - Making boxes Making Boxes Age 7 to 11 Challenge In this problem you start with some sheets of squared paper measuring 15×15 and use them to make little boxes without lids. You do this by cutting out squares at the corners and then folding up the sides. (The folds are indicated by the dotted lines in the diagram.) Begin by cutting one square out of each corner. Fold up the sides. What is the size of the base? How high are the sides? So what is its volume? Now cut a 2×2 square out of each corner and fold up the sides. Does it look as if it holds more than the first box, less than the first box or just the same amount? What is the size of the base now? How high are the sides now? So what is its volume? Now cut a 3×3 square out of each corner and fold up the sides. Does it look as if it holds more than the other boxes, less than the other boxes or just the same amount? What is the size of the base now? How high is it now? So what is its volume? If you keep on doing this, taking larger and larger squares from the corners, which box will have the largest volume?
Make links to topic and real-life situations	It would be great to link work in measures to a school event. What range of measures are needed to run a sports day? Summer fair? End of school production? School trip?

