Planning Overview
 Year 6 Place Value

Read, write, order and compare numbers up to 10,000,000 and determine the value of each digit
Round any whole number to a required degree of accuracy
Use negative numbers in context, and calculate intervals across zero
Solve number and practical problems that involve all of the above
6NPV-1 Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number $10,100,1,000,1$ tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10,100 and 1,000).
6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and nonstandard partitioning.
6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.
6NPV-4 Divide powers of 10 , from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts.

	Teaching and Learning
Numbers to ten million Understanding and counting in Powers of 10	 Mathematics guidance: key stages 1 and 2 Non-statutory guidance for the national curriculum in England. Encourage children to look at how the numbers are constructed and to look at what is the same and what is different. Reinforce the importance of 10 . 10 ones make a ten 10 tens make 100 10 hundreds make 1,000 10 hundreds make a 1,000 10 thousands make 10,000 10 ten thousands make 100,000 10 one hundred thousands make $1,000,000$ 10 one millions make $10,000,000$

Each child will repeat this 5 times but ultimately they will create a 7 digit number by using zeros as place holders.

Children will be aiming for their number to meet a certain criteria e.g. Largest number, an even number in both hundreds and thousands etc. What numbers can the children make, and can they make their own criteria. What's the same and what's different about the numbers?

Look at a number and consider what individual digits are worth. Encourage the children to divide by 100 and say what the digit is worth now. What would they need to divide it by to make it 10,000 less? Use a place value chart or Gattegno Chart (see below) to fill in the sentence stems below.

1	2	3	4	5	6	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
10	20	30	40	50	60	70	80	90
100	200	300	400	500	600	700	800	900
1000	2000	3000	4000	5000	6000	7000	8000	9000
10000	20000	30000	40000	50000	60000	70000	80000	90000
100000	200000	300000	400000	500000	600000	700000	800000	900000
1000000	2000000	3000000	4000000	5000000	6000000	7000000	8000000	9000000

> ... is ten times the size of...
...is one tenth the size of...
... is one hundred times the size of...
...is one hundredth times the size of...
... is one thousand times the size of...
...is one thousandth times the size of...

Complete a range of fluency questions to ensure children have secured their understanding of place value and how Powers of 10 link to x and \div by 10, 100, 1,000.

6NPV-1 Example assessment questions

1. Complete the sentences.
a. 500 made 1,000 times the size is \qquad
b. 0.7 made 100 times the size is \qquad .
c. 800,000 made 10 times the size is \qquad
d. $4,000,000$ made one-thousandth times the size is \qquad .
e. 9,000 made one-hundredth times the size is \qquad .
f. 3 made one-tenth times the size is \qquad
2. The distance from London to Bristol is about 170 km . The distance from London to Sydney, Australia is about 100 times as far. Approximately how far is it from London to Sydney?
3. A newborn elephant weighs about 150 kg . A newborn kitten weighs about 150 g . How many times the mass of a newborn kitten is a newborn elephant?

	Ask children Powers of 10 Spot the mis 489,632, 49 Always, Som When you o adding to th When you s are taking a	complete forwards ke 32, 500,632 imes or N a Power changes. ract a Pow y from the	and extend d backward , 501,632, 5 ver 10 , it is only r of 10 , it is changes.	uences 632 column y the col	ting in you are that you
	Start from	600 less	1000 more	$\begin{gathered} 200000 \\ \text { more } \end{gathered}$	80000 less
	379,436				
	1,963,025				
	450,852				
	2,023,876				
	Look at ran and subtrac value.	of strategi question	that can be that can be	sed to to olved by	addition g place
Partitioning in standard and non-standard ways	Look at how the part/pa e.g. A number is 4,000,000 Write the nu Play zap the Write a num	mbers can whole mod rtitioned lik 00,000 + er. Now re git. on the bo	be partitio to record this: $0,000+5,0$ d it to a pa ard.	into diffe dren's fin $+300 \text { + }$ er.	ways. Use s. 8
		4	65	18	
	Children sa to write this If they splat 60,000.	digit to sp as a par digit 6, th	at. Cover th ioned num y would re	git and this as	he children $5,318 \text { + }$

	Challenge children to think of different ways to partition the number. e.g. 4,000,000 + 260,000 + 5,300 + 18 $3,000,000 ~+~ 1,260,000 ~+~ 5,200 ~+~ 118 ~$
How can we describe 580,500?	
It has _ hundred thousands.	
It has _ ten thousands.	
It has _ hundreds.	
It is made of 580,000 and _ together	

First 4 Maths

First 4 Maths

First 4 Maths

Repeat for different combinations of positive and negative numbers.

Mastery

A scientist measures the depth of some objects below the surface of the sea. She records her measurements using negative numbers.

Object	Depth
Coral reef	-2 m
Shipwreck	-11 m
Pirate treasure	four times as deep as the coral reef
Sleeping shark	3 metres above the shipwreck

Which object is deepest? Explain your choice.
Is the sleeping shark deeper than the pirate treasure? Explain your reasoning.
A seagull is hovering 1 m above the surface of the sea. How far apart are the seagull and the coral reef?

Mastery with Greater Depth

A scientist measured the temperature each day for one week at 06:00.
On Sunday the temperature was $1 \cdot 6^{\circ} \mathrm{C}$.
On Monday the temperature had fallen by $3^{\circ} \mathrm{C}$.
On Tuesday the temperature had fallen by $2 \cdot 1^{\circ} \mathrm{C}$.
On Wednesday the temperature had risen by $1.6^{\circ} \mathrm{C}$.
On Thursday the temperature had risen by $4 \cdot 2^{\circ} \mathrm{C}$.
On Friday the temperature had fallen by $0.9^{\circ} \mathrm{C}$.
On Saturday the temperature had risen by $0 \cdot 2^{\circ} \mathrm{C}$.
What was the temperature on Saturday?

Extra challenge for children to consider.
Complete NRICH problem Negative Dice.

