Planning Overview

Year 6 Ratio and Proportion

Pupils should be taught to:

- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
- Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
- solve problems involving similar shapes where the scale factor is known or can be found
- solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).
6AS/MD-3 Solve problems involving ratio relationships

To apply this to another problem we could say for every 3 blue flowers we have 5 red - we have blue to red flowers in a ratio of $3: 5$ We can also show this as a table

Blue flowers	Red flowers
3	5
6	10
9	15
$?$	20

We can also add an additional row to our table and start to think about what the total number of flowers are.

Blue flowers	Red flowers	Total flowers
3	5	8
6	10	16
9	15	$?$
$?$	20	32

Encourage children to think about what times tables children can see in the table.

A table like this helps us to talk about the ratio and the proportional relationships

The flowers have a ratio of $3: 5$ blue to red.
In every 8 flowers there are 3 blue flowers and 5 red flowers (proportion)
$\frac{3}{8}$ are blue flowers, $\frac{5}{8}$ are red flowers.
Look at this NCETM problem with the children

- How far can you drive for every 1 litre of petrol?

- How can this help us to find how many miles can be driven for 2 litres of petrol?
- How many litres of petrol would be needed tc travel 21 miles? How do you know?
- Complete the remaining unknown values.
- How far could you drive with 40 litres of petrol? How many litres do you need to drive 175 miles?

Use ratio and proportion to solve problems with 3 unknowns	Show children this problem from NCETM To make a cheese and tomato sandwich we need 2 slices of bread, 3 slices of cheese and 4 slices of tomato. Ask the children to tell you what the ratios are involved in this problem. They should be able to tell you it's 2:3:4 Can they draw a bar model to show this ratio? Can they transfer this data to a table?			
	Number of sandwiches	bread	cheese	Tomato
	1	2	3	4
	2	4	6	8
	3	6	9	12
	4	8	12	16
	Can children se one sandwich	what happen become 12 s	this proportio wiches?	table to scale up
	Number of sandwiches	bread	cheese	Tomato
	1	2	3	4
	12	24	36	48
	We have made proportionally bigger too. Can they comp involved in mak	ur one sandw make all of the ete a similar ing 8 sandwich	12 times bigge ounts of our ing to think abou	we need to lient 12 times e ingredients
	Number of sandwiches	bread	cheese	Tomato
	1	2	3	4
	8			
	Can children us many sandwich	the same rea es we can ma	ing and a tabl with 24 slices	work out how eese?
	Number of sandwiches	bread	cheese	Tomato
	1	2	3	4

Simplifying ratio to solve proportion problems	Children will have simplified fractions during the fractions unit of work so may be able to quickly apply their understanding to simplifying ratio and proportion. Return to the images/multilink towers shown at the beginning of the unit. We used 6 multilink The ratio of white to yellow is $2: 6$ The proportion of white cubes is 2 in every 6 The propotion of yellow cubes is 4 in every 6 $\frac{2}{6}$ of the cubes are white $\frac{4}{6}$ of the cubes are yellow Explain to children that in the same way that we can simplify fractions we can simplify ratio and proportion. If we split the image up to look like this, can children see that the proportion of white cubes is 1 in every 3? Can children create the remaining ratio, proportion and fraction statements about these cubes? Repeat with another image.
	Ask children to identify what this ratio is. 'The ratio of blue to green is $6: 10^{\prime}$ If we took our above bar and made every 2 sections into 1 section, we would create a bar that looks like this. We have altered each part of the bar model in the same way so that we maintained the proportions of our original bar.
	What ratio have we simplified 6:10 down to? 'The ratio that we have simplified it down to is $3: 5$ ' Ask the children what the relationship is between both of those ratios. 6 and 10 are both multiples of 2 . Because if this we can divide both of parts of this ratio by 2 to create a simplified ratio of 3:5.

	Ask children to tackle the below problem where they need to simplify the ratio of 400:125 and use this simplified ratio to work out and unknown amount of chocolate when given a quantity of cream. 18 Here are the ingredients for chocolate ice cream. Stefan has only 300 ml of cream to make chocolate ice cream. How much chocolate should he use?
Using and applying ratio and proportion to solve a range of problems	Ask children to apply their understanding of ratio and proportion, bar models, ratio grids or multiplication and division to tackle the following problems. 22 Here is a recipe for fruit smoothies. Stefan uses the recipe to make smoothies. He uses 1 litre of yogurt. How many strawberries does he use? , \square Amir uses the same recipe. He wants to make 5 smoothies. He has 1 litre of orange juice. How many more millilitres of orange juice does he need?

	We would need to know how much pasta each person would need we would need to divide the 4 people by 4 to create one person and the 350 g by 4 to find out how much pasta that one person will eat.			
	350g			
	4 people			
	1 person 87.5 g	1 person 87.5 g	$\begin{gathered} 1 \text { person } \\ 87.5 \mathrm{~g} \\ \hline \end{gathered}$	$\begin{gathered} 1 \text { person } \\ 87.5 \mathrm{~g} \\ \hline \end{gathered}$
	So now that we know each person will eat 87.5 g of pasta we can use that to find out what 10 people will eat by multiplying that by 10 . 10 people will need 875 g of pasta.			
	Mastery			
	Sam has 9 fewer sweets than Sarah. They have 35 sweets altogether. How many sweets does Sam have?			
	Here we have 2 parts but are told that Sarah has 9 more than Sam			
	Firstly, we need to take 9 away from 35 and give that to Sarah			
	Then we divide the remaining 26 between both Sam and Sarah giving them 13 each. We need to remember to add Sarah's extra 9 onto her total.			
	Sam has 13 and Sarah has 22			
	As a bar model this could look like this			
	35			
	Sam		Sarah	
	26			9
		13	13	9

How would we represent a distance of 1 km on the map?
Allow children to explore a range of maps with a range of scales.
If necessary, children can create themselves a table to help them to scale distances

1 cm	50 m
2 cm	100 m
3 cm	150 m
4 cm	200 m

Provide children with squared paper and a given scale.
$1 \mathrm{~cm}=3 \mathrm{~km}$
Ask them to draw a map and represent certain landmarks on their maps with related distances.
'The park needs to be 15km away from the beach'
Ask them to add some landmarks of their own and to write some questions regarding these at the bottom of their maps for their peers to answer.

Children to apply this skill to other contexts
' 1 cm on this drawing represents 30 cm in real life. Fill in the reaH-life measurements of the car.'

Image taken from NCETM PD materials
Ask children to apply this understanding to answer questions in a different context like this from Teaching for Mastery

1. For every 1 litre of petrol, Miss Smith's car can travel about 7 km .
a. How many kilometres can Miss Smith's car travel on 6 litres of petrol?
b. Miss Smith lives about 28 km from school. How many litres of petrol does she use to get to school?

| Relate this understanding of scale factors to other 2D shapes. |
| :--- | :--- |
| Work out the original length of the side after it has been enlarged by a |
| scale factor of 7. |

